LiDAR, or Light Detection and Ranging, is a technology that uses lasers to measure distances and create detailed 3D maps of the environment. Artificial intelligence (AI) algorithms can then be used to automatically analyze and classify the collected data. This combination of LiDAR and AI provides a rapid, accurate, and comprehensive solution for infrastructure asset management.

One of the key benefits of using LiDAR and AI for infrastructure asset management is the ability to standardize data across projects. By providing data in industry-standard formats, LiDAR and AI make it easy to integrate the collected data into existing software platforms, reducing the need for additional software or training. This can greatly improve the efficiency and effectiveness of engineering projects, as it allows DPWs and DOTs to easily compare and analyze data from different projects.
Standardizing data across projects with LiDAR and AI can also help to avoid costly mistakes and the need for manual data collection. Because LiDAR data can be processed as many times as needed once it is collected, DPWs and DOTs can ensure that the data is accurate and complete before making decisions or taking action. This can save time and resources that would otherwise be spent on manual data collection and verification.
To illustrate the benefits of using LiDAR and AI for data standardization, consider a project that requires pavement condition data, traffic sign locations, and tree data. Traditional methods of data collection and analysis would require multiple teams to spend weeks in the field manually collecting this data. This is not only time-consuming, but it also exposes the teams to potential safety hazards and weather-related challenges.
By using LiDAR and AI for data collection and analysis, teams can greatly reduce the time spent in the field. Mobile mapping using LiDAR can collect the required data in a fraction of the time, often cutting field time by up to 80%. The collected data is automatically processed and analyzed by AI algorithms, eliminating the need for manual data processing and saving even more time.

Furthermore, the results generated by the AI algorithms are standardized and can be easily integrated into existing software platforms. This ensures that the data is accurate, complete, and consistent across projects, allowing DPWs and DOTs to make informed and data-driven decisions.
In conclusion, the use of LiDAR and AI for data standardization in civil engineering provides numerous benefits. It allows for easy integration of data into existing software platforms, improving the efficiency and effectiveness of engineering projects. It also increases the accuracy and reliability of the data, avoiding costly mistakes and the need for manual data collection. If you are a Public Works or Department of Transportation Director, we strongly encourage you to learn more about the benefits of LiDAR and AI for data standardization. Contact Cyvl today to request a demo and see the difference for yourself.
Easy steps to create a color palette
Lorem ipsum dolor sit amet, consectetur adipiscing elit lobortis arcu enim urna adipiscing praesent velit viverra sit semper lorem eu cursus vel hendrerit elementum morbi curabitur etiam nibh justo, lorem aliquet donec sed sit mi dignissim at ante massa mattis.
- Neque sodales ut etiam sit amet nisl purus non tellus orci ac auctor
- Adipiscing elit ut aliquam purus sit amet viverra suspendisse potent
- Mauris commodo quis imperdiet massa tincidunt nunc pulvinar
- Excepteur sint occaecat cupidatat non proident sunt in culpa qui officia
What is a color palette?
Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere praesent tristique magna sit amet purus gravida quis blandit turpis.

Don’t overspend on growth marketing without good retention rates
At risus viverra adipiscing at in tellus integer feugiat nisl pretium fusce id velit ut tortor sagittis orci a scelerisque purus semper eget at lectus urna duis convallis porta nibh venenatis cras sed felis eget neque laoreet suspendisse interdum consectetur libero id faucibus nisl donec pretium vulputate sapien nec sagittis aliquam nunc lobortis mattis aliquam faucibus purus in.
- Neque sodales ut etiam sit amet nisl purus non tellus orci ac auctor
- Adipiscing elit ut aliquam purus sit amet viverra suspendisse potenti
- Mauris commodo quis imperdiet massa tincidunt nunc pulvinar
- Adipiscing elit ut aliquam purus sit amet viverra suspendisse potenti
What’s the ideal customer retention rate?
Nisi quis eleifend quam adipiscing vitae aliquet bibendum enim facilisis gravida neque euismod in pellentesque massa placerat volutpat lacus laoreet non curabitur gravida odio aenean sed adipiscing diam donec adipiscing tristique risus amet est placerat in egestas erat.
“Lorem ipsum dolor sit amet consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua enim ad minim veniam.”
Next steps to increase your customer retention
Eget lorem dolor sed viverra ipsum nunc aliquet bibendum felis donec et odio pellentesque diam volutpat commodo sed egestas aliquam sem fringilla ut morbi tincidunt augue interdum velit euismod eu tincidunt tortor aliquam nulla facilisi aenean sed adipiscing diam donec adipiscing ut lectus arcu bibendum at varius vel pharetra nibh venenatis cras sed felis eget.